XLAStrategy¶
- class lightning.fabric.strategies.XLAStrategy(accelerator=None, parallel_devices=None, checkpoint_io=None, precision=None, sync_module_states=True)[source]¶
- Bases: - ParallelStrategy- Strategy for training multiple TPU devices using the - torch_xla.distributed.xla_multiprocessing.spawn()method.- all_gather(tensor, group=None, sync_grads=False)[source]¶
- Function to gather a tensor from several distributed processes. 
 - all_reduce(output, group=None, reduce_op=None)[source]¶
- Reduces the given tensor (e.g. across GPUs/processes). 
 - barrier(name=None, *args, **kwargs)[source]¶
- Synchronizes all processes which blocks processes until the whole group enters this function. 
 - process_dataloader(dataloader)[source]¶
- Wraps the dataloader if necessary. - Parameters:
- dataloader¶ ( - DataLoader) – iterable. Ideally of type:- torch.utils.data.DataLoader
- Return type:
- MpDeviceLoader
 
 - save_checkpoint(path, state, storage_options=None, filter=None)[source]¶
- Save model, optimizer, and other state as a checkpoint file. - Parameters:
- path¶ ( - Union[- str,- Path]) – A path to where the file(s) should be saved
- state¶ ( - dict[- str,- Union[- Module,- Optimizer,- Any]]) – A dictionary with contents to be saved. If the dict contains modules or optimizers, their state-dict will be retrieved and converted automatically.
- storage_options¶ ( - Optional[- Any]) – Additional options for the- CheckpointIOplugin
- filter¶ ( - Optional[- dict[- str,- Callable[[- str,- Any],- bool]]]) – An optional dictionary of the same format as- statemapping keys to callables that return a boolean indicating whether the given parameter should be saved (- True) or filtered out (- False).
 
- Return type:
 
 - setup_environment()[source]¶
- Setup any processes or distributed connections. - This must be called by the framework at the beginning of every process, before any distributed communication takes place. - Return type: