Source code for lightning.fabric.plugins.environments.lightning
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing_extensions import override
from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.utilities.port_manager import get_port_manager
from lightning.fabric.utilities.rank_zero import rank_zero_only
[docs]class LightningEnvironment(ClusterEnvironment):
    """The default environment used by Lightning for a single node or free cluster (not managed).
    There are two modes the Lightning environment can operate with:
    1.  The user only launches the main process by :code:`python train.py ...` with no additional environment variables
        set. Lightning will spawn new worker processes for distributed training in the current node.
    2.  The user launches all processes manually or with utilities like :code:`torch.distributed.launch`.
        The appropriate environment variables need to be set, and at minimum :code:`LOCAL_RANK`.
    If the main address and port are not provided, the default environment will choose them
    automatically. It is recommended to use this default environment for single-node distributed
    training as it provides a convenient way to launch the training script.
    """
    def __init__(self) -> None:
        super().__init__()
        self._main_port: int = -1
        self._global_rank: int = 0
        self._world_size: int = 1
    @property
    @override
    def creates_processes_externally(self) -> bool:
        """Returns whether the cluster creates the processes or not.
        If at least :code:`LOCAL_RANK` is available as environment variable, Lightning assumes the user acts as the
        process launcher/job scheduler and Lightning will not launch new processes.
        """
        return "LOCAL_RANK" in os.environ
    @property
    @override
    def main_address(self) -> str:
        return os.environ.get("MASTER_ADDR", "127.0.0.1")
    @property
    @override
    def main_port(self) -> int:
        if self._main_port == -1:
            self._main_port = (
                int(os.environ["MASTER_PORT"]) if "MASTER_PORT" in os.environ else find_free_network_port()
            )
        return self._main_port
[docs]    @staticmethod
    @override
    def detect() -> bool:
        return True 
[docs]    @override
    def world_size(self) -> int:
        return self._world_size 
    @override
    def set_world_size(self, size: int) -> None:
        self._world_size = size
[docs]    @override
    def global_rank(self) -> int:
        return self._global_rank 
    @override
    def set_global_rank(self, rank: int) -> None:
        self._global_rank = rank
        rank_zero_only.rank = rank
[docs]    @override
    def local_rank(self) -> int:
        return int(os.environ.get("LOCAL_RANK", 0)) 
[docs]    @override
    def node_rank(self) -> int:
        group_rank = os.environ.get("GROUP_RANK", 0)
        return int(os.environ.get("NODE_RANK", group_rank)) 
[docs]    @override
    def teardown(self) -> None:
        if "WORLD_SIZE" in os.environ:
            del os.environ["WORLD_SIZE"]
        if self._main_port != -1:
            get_port_manager().release_port(self._main_port)
            self._main_port = -1
        os.environ.pop("MASTER_PORT", None)
        os.environ.pop("MASTER_ADDR", None)  
def find_free_network_port() -> int:
    """Finds a free port on localhost.
    It is useful in single-node training when we don't want to connect to a real main node but have to set the
    `MASTER_PORT` environment variable.
    The allocated port is reserved and won't be returned by subsequent calls until it's explicitly released.
    Returns:
        A port number that is reserved and free at the time of allocation
    """
    # If an external launcher already specified a MASTER_PORT (for example, torch.distributed.spawn or
    # multiprocessing helpers), reserve it through the port manager so no other test reuses the same number.
    if "MASTER_PORT" in os.environ:
        master_port_str = os.environ["MASTER_PORT"]
        try:
            existing_port = int(master_port_str)
        except ValueError:
            pass
        else:
            port_manager = get_port_manager()
            if port_manager.reserve_existing_port(existing_port):
                return existing_port
    port_manager = get_port_manager()
    return port_manager.allocate_port()